

by the ACP Group of

States

ECOWREX 2

Implementing a complete Spatial Data Infrastructure and improved Renewable Energy resources maps for supporting sustainable energy development

Demonstration of output useability

What is the potential for production of electricity (PV offgrid) at subnational level: example at first administrative subdivision?

Objective of the exercise

- Demonstrate usability of the data generated during the project
- Prioritize locations for potential projects of solar energy generation in rural areas in ECOWAS region

Practically

- Layer(s) used are available through ECOWAS Map Viewer
- You can use **your own dataset** with administrative boundaries subdivisions
- Only open source software will be used (QGIS)

	୍କ ୧ 😻 🕈 🖊 🕅 🕻	
LAYERS		×
ENERGY DEMAND		
	ON	
Potential of solar electricity production	(GWh/year) - grid-connected CSP systems	MA
Totential of solar electricity production	(GWh/year) - grid-connected PV systems	M& 🗌
Potential of solar electricity production	ı (GWh/year) - off-grid PV systems 📑 🍯	MA =
E SENEGAL		
E. SIERRA LEONE		
TOGO		7//

Process

- Utilize the Zonal statistics function
- Calculate statistics (sum of pixels) using the raster layers:
 - Potential of solar electricity production (GWh/year) grid-connected PV systems
 - Potential of solar electricity production (GWh/year) off-grid PV systems
- Use your own dataset with administrative boundaries subdivisions as polygon layer congaing the zones (in this example we employed the publicly available FAO-GAUL adm1 dataset)

🕺 Zonal Statistics		<u>ନ୍ x</u>
Raster layer:		
pvgc_gwh		•
Band	Band 1	•
Polygon layer containing the zones:		
Gaul_adm1		•
Output column prefix:		
pvgc		
Statistics to calculate:		
Count		<u> </u>
Mean Median		=1
Ctandard deviation		<u> </u>
	ОК	Cancel

Potential of solar electricity production (GWh/year) - grid-connected PV systems and renewable energy generators (PV solar plants)

Potential of solar electricity production (GWh/year) – off-grid PV systems

0 - 10'826
10'826 - 25'637
25'637 - 47'072
47'072 - 77'973
77'973 - 125'130

Objective of the exercise

- demonstrate useability of the data generated during the project
- Prioritize locations for potential projects of Wind Power generation in rural areas in ECOWAS region

Practically

- All layers used are available through ECOWAS Map Viewer
- Only open source software will be used (QGIS and R)

Start a new GIS project

National Boundaries

Start a new GIS project

- National Boundaries
- Wind plants (original dataset need to be filtered)

Calculate the lack of electricity demand

- Electricity demand for rural areas (kWh/year) based on real demand
- Electricity demand for rural areas (kWh/year) based on threshold level
- Substract one layer from the other

Identify areas with higher lack of electricity demand

- Calculate quantile
- Visualize values distribution

Extract all values higher than 75% quantile (646)

Identify areas with higher land suitability

- Wind Land Suitability for off-Grid installations ecological scenario
- Extract all values higher than 75% quantile (280)

Identify areas with higher land suitability

Intersect higher demand with higher suitability

Buffer potential areas of interest

> Apply a 10 km buffer

Extract population on buffered potential of interest

- Download Population Distribution
- > Clip it with the buffer

Extract Analyse your output

- Compare with existing and planned infrastructures
- Look at new potential areas

Extract Analyse your output

- Compare with existing and planned infrastructures
- Look at new potential areas

