	Regional training workshop on
www.grid.unep.ch	geographical information system for energy planning
UNIVERSITÉ DE GENÈVE	Data and metadata collection guidelines
GRID UNEP Geneva	Introduction to geographic data
	Dakar, 12 August 2014
Bruno Chatenoux Université de Genève UNEP/GRID-Geneva	

at 2 Patrices

What do we mean by geographic data?

... any data with a geographical component,

formated to be used in a Geographical Information System

and provided with proper metadata.

Synonyms: Geodata, spatial data,...

Tropical cyclones

Hurricanes in the Atlantic basin have been thoroughly studied due to the quantity, quality and extent of observation records compared to other parts of the World.

Risk in general and human mortality risk in particular are mainly related to hurricane intensity, exposure and poverty (Peducai et al. 2012). Alaming evidences suggests that human will probably decrease and intensities increase. Especially in the Western Atlantic north of 20° latitude, highest-category events are predicted to increase in intensity and frequency (Bender et al., 2010; Knutson et al., 2010; Bisner et al., 2008).

Figure 6 represents the hurricanes' best track and the maximum Saffir-Simpson categories (related to wind intensities) recorded by satellite in the CARICOM region over the period 1970-2011. An important channel oriented from East to North-West can be seen between the continental part of Central America and the main islands of the region, and a second one of less importance in the north of these islands.

Figure 6 Tropical cyclones best tracks and maximum Saffir-Simpso UNEP/GRID-Geneva PREVIEW, 2012)

Figure 7 synthesizes the number of cyclones per Saffir-Simpson category in the CARICOM region, confirming a net increase of cyclone frequencies and intensities. A study in Jamaica (UNEP 2010) estimated that even using the most favourable model, more than one third of the beaches affected by a 50 year return storm surge would totally disappear by 2060.

13

Palanisamy et al. (2012) mention that during the last decade, more damage was caused to Caribbean coastal areas by cyclonic events than by SLR itself. A report, table or a figure is not a geographic data, but a proper reference (in this case "source: UNEP/GRID-Geneva PREVIEW, 2012") can lead to geographic data

In other words

Dakar is the capital and largest city of Senegal... population (2011) 2,396,800, coordinates 14° 41'34"N 17° 26'48"W

	F:	11	- ()	$\int_{\mathcal{X}}$		
	А	В	٢	51	D	E
1	Name	Capital of	Popul	ation 2011	Latitude	Longitude
2	Dakar	Senegal		2'336'800	14° 41' 34" N	17° 26' 48" W

... open source as well

Dakar is the capital and largest city of Senegal... population (2011) 2,396,800, coordinates 14° 41'34"N 17° 26'48"W

	F:	11	•	6		$f_{\mathcal{K}}$		
	А	В					D	E
1	Name	Capital of	Ro	pu	lacio	on 2011	Latitude	Longitude
2	Dakar	Senegal		$\overline{\ }$	13	396'800	14° 41' 34" N	17° 26' 48'' W

Name CapOf Pop2011 Lat_dd Long_dd

- short attribute name
- description on metadata compulsory

Different format: Vector

Vectors are composed of <u>features</u> (anything you can see on the landscape, e.g. houses, roads, lakes) containing <u>attributes</u> (text or numerical information describing the feature).

Different format: Raster

Rasters are made up of a matrix (composed of rows and columns) of pixels (also called cells), each one representing the condition of corresponding geographical region.

Raster data is used in a GIS application when we want to display information that is continuous across an area and cannot easily be divided into vector features (as for example elevation or solar exposition.

Vector can be rasterized, but only <u>numerical</u> attribute, <u>one by one</u> and it will create <u>uncertainty</u>.

Vectorization is also possible but remains uncertain.

Source: http://linfiniti.com/dla/ raster data worksheet

Different format: Raster

Raster resolution will constrain the scale of work

Landsat 8 18.4.2014 Panchromatic (15 m resolution)

Different format: Raster

Raster geographical accuracy is defined by its resolution (pixel size).

On the contrary of vectors, pixels values and extent is easily modified when processing them and should be manipulated with care and knowhow !

Pixel size: 1.00, 1.00 Pixel size: 0.95, 1.02

- pixels size modified
- pixels values modified
- shifted pixels
- O became nodata

Coordinate Reference Systems (CRS)

A CRS defines how the <u>two dimensional</u>, projected map in your GIS is related to real places on the earth (<u>globe</u>).

Source: <u>http://linfiniti.com/dla/</u> coordinate reference systems worksheet

Coordinate Reference Systems (CRS)

The decision as to which map projection and coordinate reference system to use, depends on the regional extent of the area you want to work in, on the analysis you want to do.

WGS84 (EPSG:32628) N (EPSG:32628)

Source: <u>http://linfiniti.com/dla/</u> coordinate reference systems worksheet

Find or define proper CRS

Define proper CRS http://epsg.io

Coordinate reference systems f	or "senegal"	
Found 6 valid records and 4 deprecated records	s (in 0.06999999999997 seconds)	
Yoff / UTM zone 28N		Type of results
Area of use: Senegal - onshore and offshore. Coordinates on a map		Coordinate reference systems Projected (2) Geodetic (4) Geodetic 3D (2) Geocentric (2)
Yoff EPSG-4310 Area of Use: Senegal - onshore and offshore. Coordinates on a map		Operation (2) Transformation (2) Compound (1) Conversion (1)
Point 58 FPSG-4620 with transformation: 1880		Datum (2) Geodetic (2)
Area of use: Burkina Faso - central; Niger - south Coordinates on a map	west, in proximity to the parallel of latitude of 12°N. (accuracy: 44.0)	Area (6)

Filter utm zone 28n

Recently used coordinate reference systems	
Coordinate Reference System	Authority ID
WGS 84 / UTM zone 28N	EPSG:32628

EPSG:32628

Projected coordinate system

WGS 84 / UTM zone 28N

Attributes

Unit: metre

Geodetic CRS: WGS 84

Datum: World Geodetic System 1984

Ellipsoid: WGS 84

Prime meridian: Greenwich

Data source: OGP

Revision date: 1995-06-02

Center coordinates 500000.00 4649776.22

Projected bounds: 166021.44 0.00 534994.66 9329005.18

WGS84 bounds: -18.0 0.0

-12.0 84.0

Find or define proper CRS

CRS already defined and available in metadata

🕺 Layer	Properties - Worls_ut	tm28n Metadata	
🔀 Ger	neral	▼ Description	
😽 Sty	/le	Title	
(abc Lab	pels	Abstract	
Fiel	lds	Keyword list	
🞸 Rer	ndering	DataUrl Format	
🗭 Disp	play	▼ Attribution	
🜔 Act	tions	Title	
• Joir	ns	hu l	
Dia	agrams	▼ MetadataUri	
🧿 Me	etadata		
		Type Format V	
		▼ LegendUrl	
		Url Format 🔹	
		Properties	
		Extents	
		In layer spatial reference system units	
		xMin,yMin -5120760.97,-9990070.14 : xMax,yMax 6120757.75,9359089.29	
		Layer Spatial Reference System	
		+proj=utm +zone=28 +datum=WGS84 +units=m +no_defs	
		Load Style Save As Default Restore Default Style Save Style	-
		OK Cancel Apply Help	

Reoprojecting vectors & rasters

As seen previously rasters are modified when reprojected, vectors remains the same.

Topology

Topology expresses the spatial relationships between connecting or adjacent vector features (points, polylines and polygons) in a GIS. Topological or topology-based data are useful for detecting and correcting digitising errors (e.g. two lines in a roads vector layer that do not meet perfectly at an intersection).

Topology - tools

Many GIS applications provide tools for topological editing. For example in QGIS you can enable topological editing to improve editing and maintaining common boundaries in polygon layers.

Layer	Mode		Tolerance	Uni	ts	Avoid I
rectangle	to vertex and segment	-	0.000000	pix	-	
rnd10_squares	to vertex and segment	-	0.000000	pix	-	
square	to vertex and segment	-	0.000000	pix	-	
world_iso3	to vertex and segment	-	0.000000	pix	-	
Worls_utm28n	to vertex and segment	-	0.000000	pix	-	
Enable topological editing	Enable snapping on intersection	OK	Car	ncel		Apply
Enable topological editing	Enable snapping on intersection	OK	Car	ncel		Apply
Enable topological editing	Enable snapping on intersection	OK	Ca	ncel		Apply
Enable topological editing	Enable snapping on intersection	OK	Car	ncel		Apply
Enable topological editing	Enable snapping on intersection	OK	Ca	ncel		Apply
Enable topological editing	Enable snapping on intersection	OK ne (Se	Car car	ncel		Apply

Vector processing

Buffers

Spatial overlay

Source: http://linfiniti.com/dla/ spatial analysis: vector data worksheet

Raster interpolation

Inverse distance Weighted (IDW)

Triangulated Irregular Network (TIN)

Source: <u>http://linfiniti.com/dla/</u> spatial analysis: raster data worksheet

To conclude

Thanks

www.grid.unep.ch

bruno.chatenoux@unepgrid.ch

Xxx Xxx Xxx Xxx