
Cartographie des ressources hydroélectriques via le GIS pour la région de la CEDEAO

Session 7: Bilan hydrique

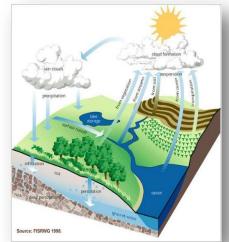
Formation, Dakar, Sénégal, juillet 2016

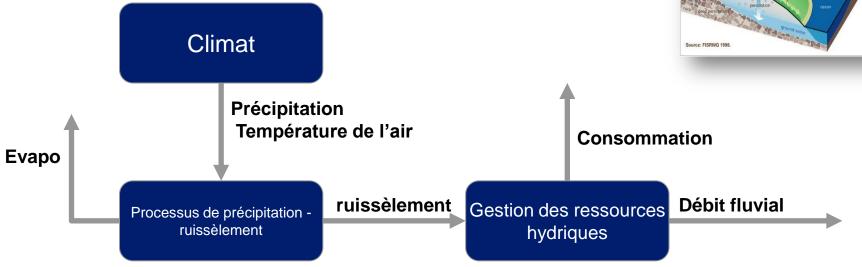
Formateur : Harald Kling

Pöyry, Hydro Consulting, Hydroélectricité, Autriche

Financé par

Bilan hydrique


Aperçu


- Théorie du bilan hydrique
- Groupe de travail
 - Calcul simple du bilan hydrique
 - Analyse simple du scénario du changement climatique

Théorie du bilan hydrique

Principaux facteurs favorisant la disponibilité de l'eau

Bilan hydrique

Pourquoi est-ce important pour l'hydroélectricité ?

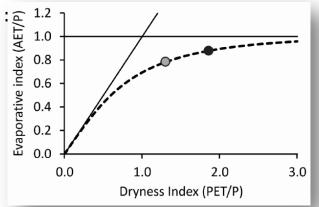
- Le bilan hydrique décrit l'importance du ruissèlement généré à partir de la pluviosité.
- Comprendre le bilan hydrique est essentiel pour la compréhension les variations régionales en terme de débits et donc d'hydroélectricité.
- Tout changement au niveau du bilan hydrique entraine des changements de la production d'hydroélectricité :
 - Les variations naturelles de la pluviosité d'une année à l'autre
 - Changement climatique

Modélisation du bilan hydrique

Fondements : équation du bilan hydrique annuel

Exemple: Haute Volta noire (Burkina Faso)

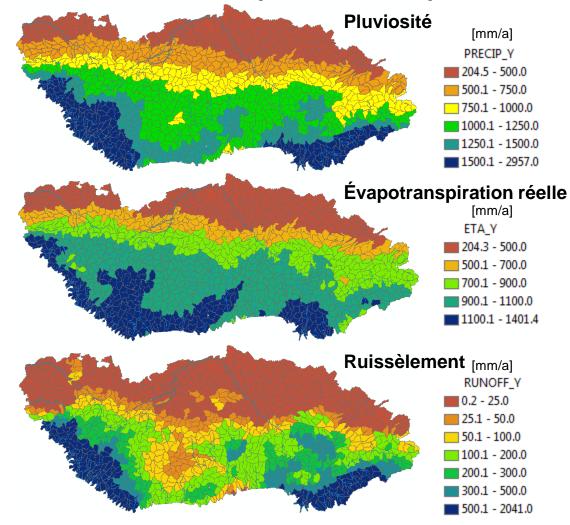
L'évaporation est principalement une petite composante du bilan hydrique!


Relation avec le bilan hydrique annuel de Budyko :
$$\frac{ETA}{P} = \left[1 + \left(\frac{ETP}{P}\right)^{-c}\right]^{-1/c}$$

ETA : évapotranspiration réelle annuelle [mm]

ETP : évapotranspiration potentiel annuelle [mm]

ETP: évapotranspiration potentiel annuelle [mm]

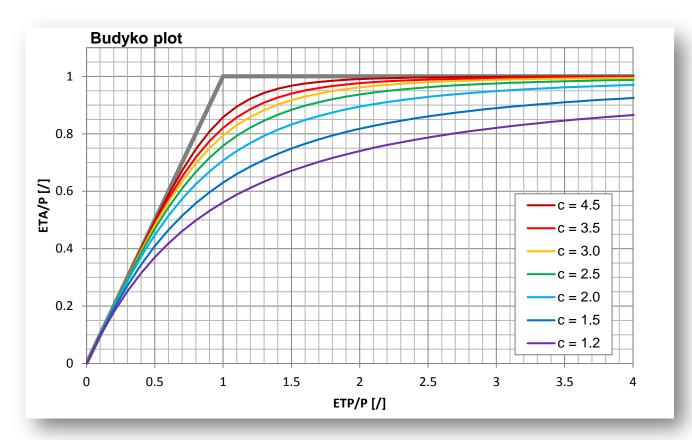

P: précipitation annuelle [mm] C: paramètre du modèle

L'équilibre hydrique en Afrique de l'Ouest

Résultats de simulation par sous-zone pour 1998-2014

Bilan hydrique

Montrer les sous-zone Changer les afficchages entre PRECIP_Y, ETA_Y, RUNOFF_Y Cliquer sur les sous-zones et montrer les attributs


Passer à la présentation du GIS ...

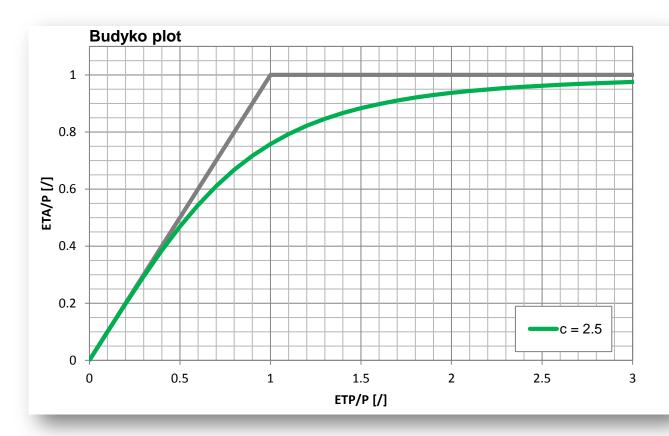
Bilan hydrique annuel

Comment faire une simple estimation du bilan hydrique

$$\frac{ETA}{P} = \left[1 + \left(\frac{ETP}{P}\right)^{-c}\right]^{-1/c}$$

ETA: évapotranspiration réelle annuelle [mm]

ETP: évapotranspiration potentielle annuelle [mm]


P: précipitation annuelle [mm]

c: paramètre du modèle

Bilan hydrique annuel

Comment faire une simple estimation du bilan hydrique

$$\frac{ETA}{P} = \left[1 + \left(\frac{ETP}{P}\right)^{-c}\right]^{-1/c}$$

ETA: : évapotranspiration réelle annuelle [mm]

ETP: évapotranspiration potentielle annuelle [mm]

P: précipitation annuelle [mm]

c: paramètre du modèle

- Étape 1: obtenir les données d'entrée
 - Précipitation (P) (mm)
 - Évapotranspiration potentielle (ETP) (mm)
 - Superficie (km²)
- Étape 2 : utiliser le graphique de Budyko
- Étape 3 :
 Calculer le ruissèlement (mm)

 Ruissèlement = P FTA
- Étape 4 : Calculer le débit (m³/s)

Q = Ruissèlement * région/temps

Débit [m³/s] = Ruissèlement [mm] * Superficie [km²] /

Temps [s] * 1000

Temps [s] = 365 jours * 24 heures * 60 minutes * 60

secondes

Groupe de travail

Estimation du bilan hydrique

- Groups de 3-4 personnes (même chose qu'auparavant)
- Sélectionner le fleuve qui vous intéresse (utiliser vos cartes)
- Demander moi les données d'entrée à partir du GIS
- Procéder aux calculs du bilan hydrique
 - Utiliser le graphique de Budyko (voir imprimé)
 - Calculer le ruissèlement
 - Calculer le débit
- Rendre compte des résultats
 - Nous comparerons la valeur du débit de la couche du réseau fluvial par GIS

Groupe de travail

Estimation du bilan hydrique

- Raisons sous-tendant l'écart au niveau du débit entre l'estimation simple et la couche du réseau fluvial par GIS
 - Différent s paramètres de la courbe de Budyko (résultats de calibrage du modèle!)
 - Relations non-linéaires avec le bilan hydrique
 - Dans l'exemple pratique, nous avons effectué un calcul concentré du bilan hydrique.
 - Mais le modèle du bilan hydrique a été appliqué par distribution spatiale (pour chaque tronçon de fleuve).
 - Dérivations
 - Irrigation
 - Plaines inondables
- Les résultats de la simulation sont plus sensibles dans les bassins semi-arides que dans les bassins humides
 - Une petite erreur dans le paramètre du module peut causer un biais important pour le débit simulé du bassin semi-basin aride
 - Le débit du bassin semi-aride est également plus sensible aux changements possible s du climat

Groupe de travail

Estimation de l'équilibre hydrique et scénarios de changement climatique

- Même méthode qu'auparavant
- Utiliser les scénarios du changement climatiques: Exemple :

Hausse future des précipitations : +10%

Baisse future des précipitations : -10%

Précipitation = 1000 mm

Précipitation + 10 % = 1000 mm * 1.10 = 1100 mm

Précipitation – 10 % = 1000 mm * 0.90 = 900 mm

- Réchauffement par +2°C: +5% de transpiration potentielle
- Recalculer l'équilibre hydrique pour les scénarios de changement climatique
 - Utiliser le graphique de Budyko (voir imprimé)
 - Calculer le ruissèlement
 - Calculer le débit
- Rendre compte des résultats
 - Le changement du débit en pourcentage pour les scénarios de changement climatique

Financé par

