
Cartographie des ressources hydroélectriques via le GIS pour la région de la CEDEAO

Session 6:

Taille et production d'électricité des centrales hydroélectriques

Formation, Dakar, Sénégal, juillet 2016

Formateur : Harald Kling

Pöyry, Hydro Consulting, centrale hydroélectrique, Autriche

Financé par

Taille et production d'électricité des centrales hydroélectriques

Aperçu

- Théorie
 - Potentiel hydroélectrique théorique
 - Capacité installée
 - production d'électricité
- Groupe de travail
 - Sélectionner un tronçon fluvial
 - Calculer la production d'électricité
 - Tester les différents scénarios de conception de capacité installée

Théorie de l'hydroélectricité

Définitions

- Potentiel hydroélectrique théorique [MW]
 - Calculé dans la présente étude
 - Production hydroélectrique sur tous les débits d'eau naturelle sont utilisés.
 Intègre une estimation brute de l'efficience des turbines.
- Capacité installée [MW]
 - Décision de conception clé (coûts!)
 - Étroitement liée au débit nominal d'une turbine
- production d'électricité [MW]
 - Puissance de sortie lors de l'exploitation de la centrale hydroélectrique
 - Dépend de ce qui suit :
 - Séries chronologique des courants de déversement
 - Limitée par la capacité installée et le débit nominal
 - Dépend de la charge hydraulique, des pertes hydrauliques, et de l'efficience (turbine, générateur, transformateur)
 - Énergie [MWh] = Puissance [MW] x Temps [h]

Théorie de l'hydroélectricité

Potentiel hydroélectrique théorique d'un tronçon de fleuve

Puissance [MW] = Débit [m³/s] * Hauteur [m] * c

Puissance Potentiel hydroélectrique théorique [MW]

Débit Débit annuel moyen dans le tronçon [m³/s]

Hauteur Différence d'élévation du début à la fin du tronçon du fleuve [m]

c Constant, en général c = 8.5/1000

Potentiel hydroélectrique théorique

Exemple de la Guinée

rieia	value
ARCID	693004
TOARCID	693899
FROMARCID	690929
NB	310
RIVER	Kakrima
RIVER_FREN	Kakirima
COUNTRY_1	GIN
COUNTRY_2	
AREA	5701.17
LENGTH	3.09
EXRIVER	1
ELEV_US	215.4
ELEV_DS	212.8
ELEV_DIFF	2.6
SLOPE	0.00086
POWER	2.494
POWER_SPEC	0.808
Q_YEAR	111.25
Q_JAN	21.34
Q_FEB	18.97
Q_MAR	26.09
Q_APR	47.43
Q_MAY	118.56
Q_JUN	237.12
Q_JUL	308.27
Q_AUG	284.55
Q_SEP	142.28
Q_OCT	71.14
Q_NOV	35.57
Q_DEC	23.71
Q_2035_P25	-5.4
Q_2035_P50	-0.9
Q_2035_P75	4.3
Q_2055_P25	-6.3
Q_2055_P50	0.9
Q_2055_P75	4
PLANT_SIZE	3

Value

Field

POWER [MW]

- 0.0 0.1
- 0.2 1.0
- 30.1 100.0
- **—1**00.1 568.0

Potentiel hydroélectrique théorique

Faites le zoom avant sur le tronçon Passer de l'affichage Q ANNÉE et PUISSANCE Cliquer sur la tronçon et afficher les attributs Montrer la couche de la centrale hydroélectrique existante Expliquer la somme de la PUISSANCE pour plusieurs tronçons La PUISSANCE dépend du plan d'implantation de la centrale :

- Profil de l'eau avec dérivation
- Stockage

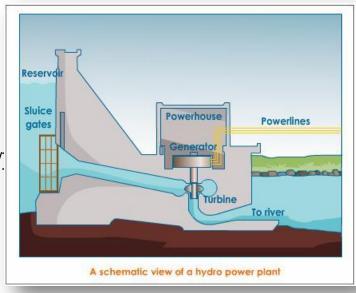
Passer à la présentation du GIS...

Théorie hydroélectrique

Production d'électricité

POW = Qturb * eff * (RWL - TWL - HL) * 9.81 / 1000

POW Puissance de sortie [MW]


Qturb Débit à la sortie de la turbine [m³/s]

Eff Efficience (turbine, générateur, transformateur) [/]

RWL Niveau d'eau du réservoir [m]

TWL Niveau d'eau en aval [m]

HL Pertes hydrauliques (penstock, etc.) [m]

Contraintes:

POW limitée par capacité installée [MW]

Qturb limité par capacité de la turbine [m³/s]

Paramètres de conception clé!

Qturb également limité par les besoins de débit environnemental!

Énergie:

E [MWh] = POW [MW] * temps [h]

Théorie hydroélectrique

Potentiel hydroélectrique théorique d'un tronçon de fleuve

La production d'électricité (POW) et le potentiel hydroélectrique (P) sont liés!

- P Potentiel hydroélectrique théorique [MW]
- Q Débit annuel moyen dans le tronçon [m³/s]
- H Différence d'élévation du début à la fin du tronçon [m]
- c Constant, en général c = 8.5

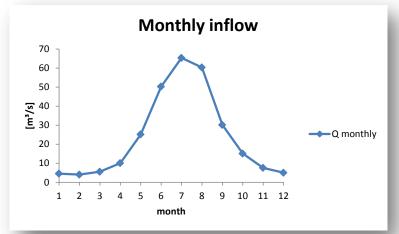
Groupe de travail

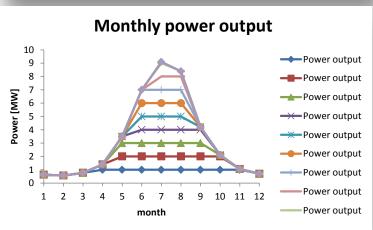
Taille et production d'énergie d'une centrale

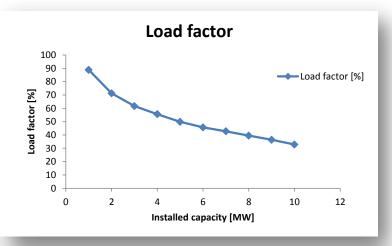
- Nous utiliserons le GIS pour sélectionner une section de fleuve comme excercie pratique
- Décision au sujet du plan d'implantation d'une centrale
 - Plan au fil de l'eau sans dérivation
 - Plan au fil de l'eau avec dérivation
 - Plan de stockage : équilibrage de la variabilité, plus compliqué, non couvert par la formation
- Données clés du renseignement provenant du réseau fluvial
- Dans Excel :
 - Calcul de l'énergie brute
 - Test de différents scénarios de conception pour la capacité installée

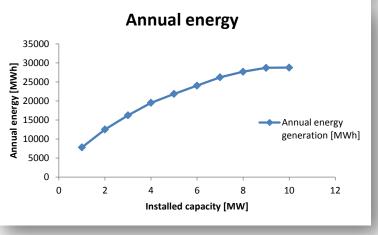
Groupe de travail

Taille et production d'énergie d'une centrale


Data 1	rom GIS lay	yer river ne	etwork									
variable	value	units										
river	Boa											
ARCID us	890979											
ARCID ds	891899											
elev us	341.7	m										
elev ds	325	m										
height	16.7	m										
eff	0.9	/										
			User specified scenarios for installed capacity									
	Р	Pinst [MW]		2		4	5	6	7	8	9	10
		ted [m³/s]	6.8	13.6	20.3	27.1	33.9	40.7	47.5	54.3	61.0	67.8
Mean power output [MW]		0.9	1.5	1.9	2.3	2.6	2.8	3.1	3.3	3.4	3.5	
Load factor [%]		90.1	72.5	62.9	57.0	51.3	46.9	43.8	40.8	38.0	34.8	
nual energy generation [MWh]		7895.8	12709.1	16522.2	19957.1	22473.3	24663.3	26853.3	28613.0	29994.5	30457.3	
			Calculated energy for design scenarios									
	[m³/s]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]	[MW]
month	Q monthly	Power	Power ou	Power ou	Power ou	Power ou	Power ou	Power ou	Power out	Power ou	Power ou	Power o
1	4.52	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.
					0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.
2	4.02	0.6	0.6	0.6	0.0	0.0					0.0	
		0.6 0.8		0.6		0.8	0.8	0.8	0.8	0.8	0.8	0.0
2	5.53		0.8		0.8			0.8 1.5	0.8 1.5	1.5	1.5	
2	5.53 10.05	0.8	0.8 1.0	0.8	0.8 1.5	0.8	0.8				1.5	1
2 3 4	5.53 10.05 25.13	0.8 1.5 3.7	0.8 1.0 1.0	0.8 1.5	0.8 1.5 3.0	0.8 1.5	0.8 1.5	1.5	1.5	1.5	1.5 3.7	1. 3.
2 3 4 5	5.53 10.05 25.13 50.26	0.8 1.5 3.7	0.8 1.0 1.0 1.0	0.8 1.5 2.0	0.8 1.5 3.0 3.0	0.8 1.5 3.7	0.8 1.5 3.7	1.5 3.7	1.5 3.7	1.5 3.7	1.5 3.7 7.4	1 3. 7.
2 3 4 5	5.53 10.05 25.13 50.26 65.34	0.8 1.5 3.7 7.4	0.8 1.0 1.0 1.0	0.8 1.5 2.0 2.0	0.8 1.5 3.0 3.0 3.0	0.8 1.5 3.7 4.0	0.8 1.5 3.7 5.0	1.5 3.7 6.0	1.5 3.7 7.0	1.5 3.7 7.4	1.5 3.7 7.4 9.0	1.5 3.7.4 9.6
2 3 4 5 6	5.53 10.05 25.13 50.26 65.34 60.31	0.8 1.5 3.7 7.4 9.6	0.8 1.0 1.0 1.0	0.8 1.5 2.0 2.0 2.0	0.8 1.5 3.0 3.0 3.0 3.0	0.8 1.5 3.7 4.0 4.0	0.8 1.5 3.7 5.0 5.0	1.5 3.7 6.0 6.0	1.5 3.7 7.0 7.0	1.5 3.7 7.4 8.0	1.5 3.7 7.4 9.0	1 3 7 9 8.9
2 3 4 5 6 7	5.53 10.05 25.13 50.26 65.34 60.31 30.16	0.8 1.5 3.7 7.4 9.6 8.9	0.8 1.0 1.0 1.0 1.0 1.0	0.8 1.5 2.0 2.0 2.0 2.0	0.8 1.5 3.0 3.0 3.0 3.0 3.0	0.8 1.5 3.7 4.0 4.0	0.8 1.5 3.7 5.0 5.0 5.0	1.5 3.7 6.0 6.0 6.0	1.5 3.7 7.0 7.0 7.0 4.4	1.5 3.7 7.4 8.0 8.0	1.5 3.7 7.4 9.0 8.9 4.4	0.8 1.5 3.7 9.6 8.9 4.4
2 3 4 5 6 7 8	5.53 10.05 25.13 50.26 65.34 60.31 30.16 15.08	0.8 1.5 3.7 7.4 9.6 8.9 4.4	0.8 1.0 1.0 1.0 1.0 1.0	0.8 1.5 2.0 2.0 2.0 2.0 2.0	0.8 1.5 3.0 3.0 3.0 3.0 3.0 2.2	0.8 1.5 3.7 4.0 4.0 4.0	0.8 1.5 3.7 5.0 5.0 5.0	1.5 3.7 6.0 6.0 6.0 4.4	1.5 3.7 7.0 7.0 7.0 4.4	1.5 3.7 7.4 8.0 8.0	1.5 3.7 7.4 9.0 8.9 4.4	1.5 3.7 7.4 9.6 8.9






Groupe de travail

Taille et production d'énergie d'une centrale

Financé par