

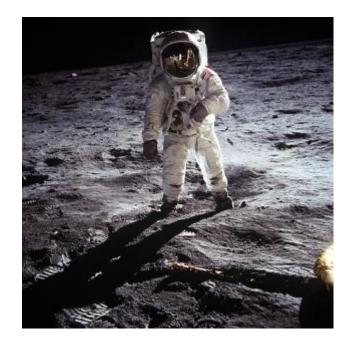
The HOMER Simulation Tool PROS & CONS

ECREEE Regional Training of Trainers Workshop: HOMER software for RE project design

> Jorge Sneij and David Vilar June 2013

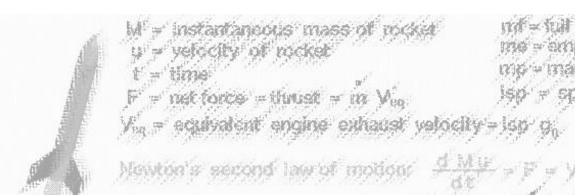
I. IDEAL EXAMPLE

Considerations: Dimensioning and Simulating


What is dimensioning and simulating in this training?

IDEAL EXAMPLE

"Consider that our purpose is to build a spacecraft to reach the moon."


Before building it, you have **to understand the physics behind and the available technology** before you start such a complex project.

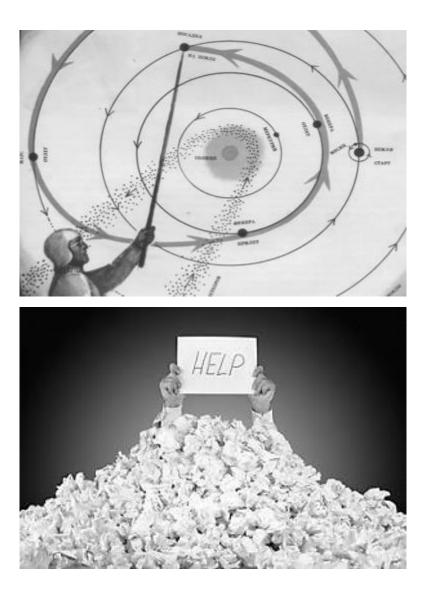
- The equations are related to **the model**, that will explain the behavior of your spacecraft in the context.
- The available technology **refer to the inputs** you will use (among other parameters such as restrictions).

Oversized results

If you have the technology and the real inputs, but you don't understand the model, it is very likely that your solution will be either oversized or wrong.

Unrealistic results

If you understand the model, but you don't have the proper technology data and real inputs, it is very likely that your solutions will be either unrealistic or wrong.



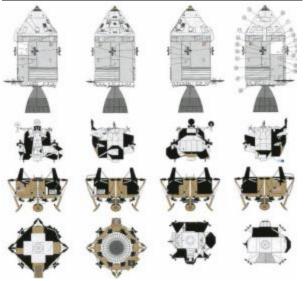
Criteria and convergence

 It is the human, with criteria who drives the simulation software to converge to feasible solutions.

 If you start a simulation without criteria, probably you will face a situation of many (or none) results without finding a good solution.

Simulating different sizes and all the possible combinations

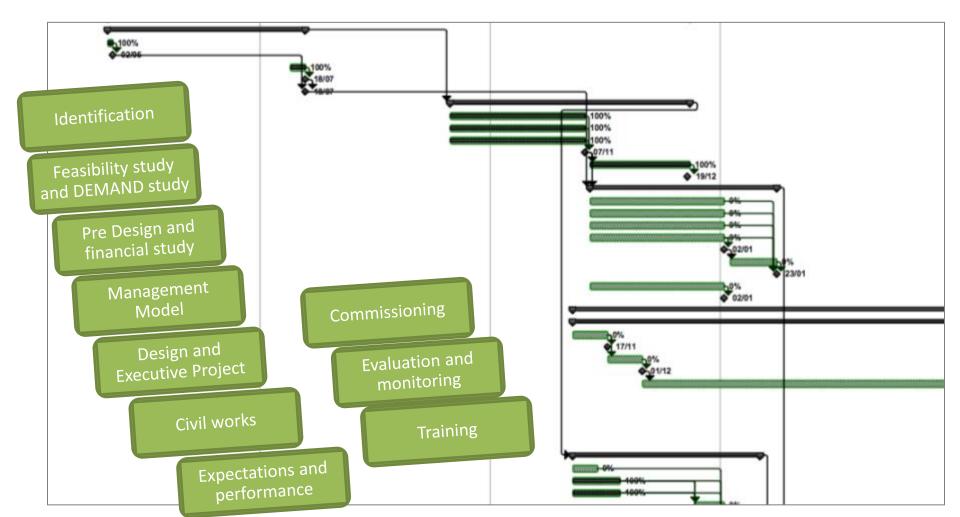
IN THIS IDEAL EXAMPLE OF A SPACECRAFT,


Through a **computer simulation** we can try different sizes (or dimension) of the components for a spacecraft, as well to set different technology combinations and restrictions ...

[the computer runs the model with our inputs]

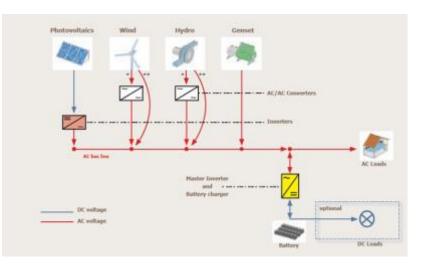
... and then we can analyze the results: a list of feasible technology combinations.

Finally, we select the more convenient solution for our purpose taking into account several parameters and conditions.


5886 23892 24432 10248 21866 7154 28609 303 5267 31647 9110 12492 25736 14119 1 418 27173 5336 252 14541 6608 9682 23389 8401 10953 26527 6767 18296 11165 19042 7833 29497 9104 1969 31178 3644 32289 7 609 26832 24828 24252 2339 23463 30942 1 855 14763 1017 24574 17940 25744 6483 75 752 15301 26260 24918 6896 24114 15146 4377 27330 27370 30020 32178 22052 32524 257 2668 837 1043 4107 4007 31288 17036
83 5267 31647 9110 12492 25736 14119 1 8 27173 5336 252 14541 6608 9682 23389 81 10953 26527 6767 18296 11165 19042 33 29497 9104 1969 31178 3644 32289 77 9 26832 24828 24252 2339 23463 30942 15 5 14763 1017 24574 17948 25744 6483 75 52 15301 26260 24918 6896 24114 15146 77 27330 27370 30020 32178 22052 32524
5267 31647 9110 12492 25736 14119 1 27173 5336 252 14541 6608 9682 23389 10953 26527 6767 18296 11165 19042 29497 9104 1969 31178 3644 32289 77 26832 24828 24252 2339 23463 30942 1 14763 1017 24574 17940 25744 6483 75 15301 26260 24918 6896 24114 15146 27330 27370 30020 32178 22052 32524
5267 31647 9110 12492 25736 14119 1 2173 5336 252 14541 6608 9682 23389 10953 26527 6767 18296 11165 19042 29497 9104 1969 31178 3644 32289 7 5832 24828 24252 2339 23463 30942 1 4763 1017 24574 17940 25744 6483 75 15301 26260 24918 6896 24114 15146
67 31647 9110 12492 25736 14119 1 73 5336 252 14541 6608 9682 23385 1953 26527 6767 18296 11165 19042 1497 9104 1969 31178 3644 32289 77 32 24828 24252 2339 23463 30942 1 63 1017 24574 17940 25744 6483 75 301 26260 24918 6896 24114 15146
7 31647 9110 12492 25736 14119 1 3 5336 252 14541 6608 9682 23389 53 26527 6767 18296 11165 19042 97 9104 1969 31178 3644 32289 77 2 24828 24252 2339 23463 30942 1 3 1017 24574 17940 25744 6483 75 01 26260 24918 6896 24114 15146
31647 9110 12492 25736 14119 1 5336 252 14541 6608 9682 23389 26527 6767 18296 11165 19042 7 9104 1969 31178 3644 32289 77 24828 24252 2339 23463 30942 1 1017 24574 17940 25744 6483 75 26260 24918 6896 24114 15146 8 27370 30020 32178 22052 32524
1647 9110 12492 25736 14119 1 336 252 14541 6608 9682 2385 26527 6767 18296 11165 19042 9104 1969 31178 3644 32289 77 4828 24252 2339 23463 30942 1 017 24574 17940 25744 6483 75 26260 24918 6896 24114 15146 27370 30020 32178 22052 32524
647 9110 12492 25736 14119 1 36 252 14541 6608 9682 23389 6527 6767 18296 11165 19042 104 1969 31178 3644 32289 7 828 24252 2339 23463 30942 1 17 24574 17940 25744 6483 75 6260 24918 6896 24114 15146
47 9110 12492 25736 14119 1 6 252 14541 6608 9682 23389 527 6767 18296 11165 19042 04 1969 31178 3644 32289 7 28 24252 2339 23463 30942 1 7 24574 17940 25744 6483 75 260 24918 6896 24114 15146
7 9110 12492 25736 14119 1 252 14541 6608 9682 23385 27 6767 18296 11165 19042 1 1969 31178 3644 32289 75 2 24252 2339 23463 30942 1 24574 17940 25744 6483 75 60 24918 6896 24114 15146
9110 12492 25736 14119 1 52 14541 6608 9682 23389 6767 18296 11165 19042 1969 31178 3644 32289 7 24252 2339 23463 30942 1 4574 17940 25744 6483 75 24918 6896 24114 15146
110 12492 25736 14119 1 2 14541 6608 9682 23389 6767 18296 11165 19042 969 31178 3644 32289 7 4252 2339 23463 30942 1 574 17940 25744 6483 75 24918 6896 24114 15146
10 12492 25736 14119 1 14541 6608 9682 23389 767 18296 11165 19042 69 31178 3644 32289 7 252 2339 23463 30942 1 74 17940 25744 6483 75 4918 6896 24114 15146
0 12492 25736 14119 1 14541 6608 9682 23385 57 18296 11165 19042 9 31178 3644 32289 77 52 2339 23463 30942 1 4 17940 25744 6483 75 918 6896 24114 15146
12492 25736 14119 1 4541 6608 9682 23389 7 18296 11165 19042 31178 3644 32289 7 2 2339 23463 30942 1 17940 25744 6483 75 8 6896 24114 15146
2492 25736 14119 1 41 6608 9682 23385 18296 11165 19042 1178 3644 32289 7 2339 23463 30942 1 7940 25744 6483 75 6896 24114 15146
492 25736 14119 1 1 6608 9682 23385 8296 11165 19042 178 3644 32289 77 339 23463 30942 1 940 25744 6483 75 6896 24114 15146
92 25736 14119 1 6608 9682 23389 296 11165 19042 78 3644 32289 7 39 23463 30942 1 40 25744 6483 75 896 24114 15146
2 25736 14119 1 6608 9682 23389 96 11165 19042 3 3644 32289 77 23463 30942 1 3 25744 6483 75 96 24114 15146
25736 14119 1 08 9682 23389 11165 19042 3644 32289 7 23463 30942 1 25744 6483 75 24114 15146
5736 14119 1 8 9682 23389 11165 19042 644 32289 7 3463 30942 1 5744 6483 75 24114 15146
736 14119 1 9682 23385 1165 19042 44 32289 77 463 30942 1 744 6483 75 4114 15146
36 14119 1 2682 23389 1 165 19042 1 33 30942 1 14 6483 75 14 15146
14119 1 82 23389 5 19042 32289 77 30942 1 6483 79 4 15146
14119 1 2 23389 19042 2289 77 30942 1 6483 79 15146
4119 1 23389 19042 289 77 0942 1 483 79 15146
119 1 23389 9042 89 77 942 1 83 79 5146
19 1 3389 042 9 77 42 1 3 79 146
75 16

II. HYBRID ENERGY SYSTEM SIMULATION

What HOMER software does.


Life cycle project: stages, imensioning, simulation and design

MAIN PURPOSE OF THE SIMULATION: "to dimension conveniently"

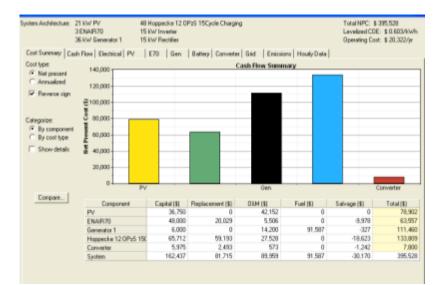
- TO DIMENSION an hybrid energy system
 - Generator size
 - for a given energy demand
 - for a given list of available technology and restrictions to consider

HOMER SIMULATES DIFFERENT SIZES (dimensioning) OF THE SYSTEM

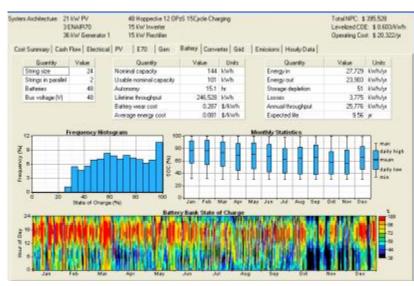
- A dimensioning tool (also referred to as a sizing tool) performs dimensioning of the system: given an energy requirement, it determines the optimal size of each of the different components of the system
- With simulation tools, as opposed to dimensioning tools, the user must specify the nature and size of each component. *The tool then provides a* detailed analysis of the behavior of the system.
- Simulation tools can also be used for sizing. This requires that the user correctly identify the key variables and then repeatedly run the simulation, adjusting the variables manually to converge on an acceptable sizing. Some packages automate this process.

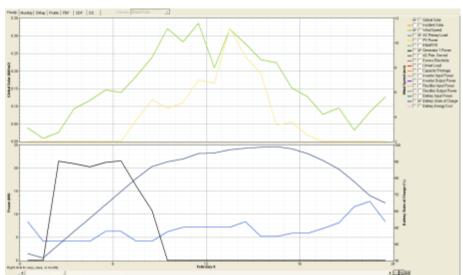
Simulation in HOMER

- To use HOMER, you provide the model with **inputs**, which describe <u>technology options</u>, component costs, and resource availability.
- HOMER uses these inputs to simulate different system configurations, or combinations of components, and generates results that you can view as a list of feasible configurations sorted by net present cost.
- HOMER also displays simulation results in a wide variety of tables and graphs that help you compare configurations and evaluate them on their economic and technical merits.

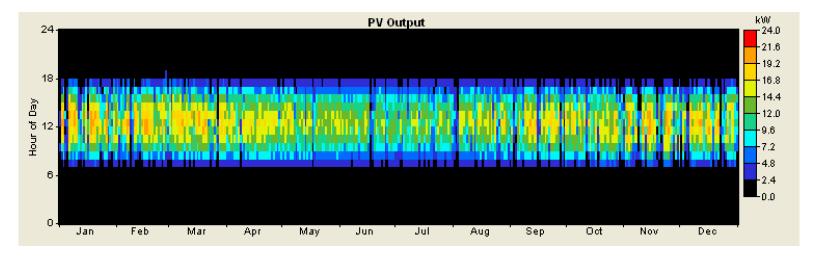


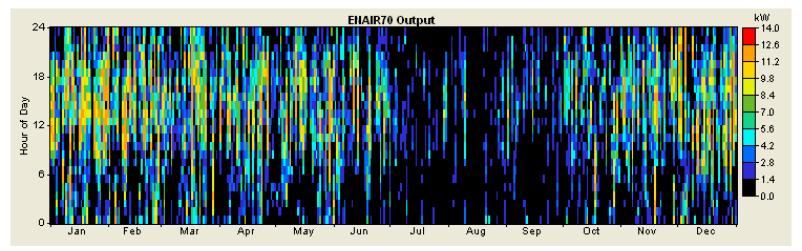

List of feasible solutions


File View Inputs Outputs Window Help														- 8
Equipment to consider <u>Add/Remove</u>	<u>C</u> alculate		ulations: 0 of sitivities: 0 of		Progres Status:									
PV Primary Load 1	Sensitivity Results	Optimizati	on Results											
160 k̄Wh/d 13 kW peak ◀➡► 🗐	Sensitivity variables Primary Load 1 (kW	h/d) 160	▼ PV S	Slope (degj	24	-								
ENAIR70 H1500	Double click on a system below for simulation results.													
		PV E (kW)	70 Gen (kW)	H1500	Conv. (kW)	Initial Capital	Operating Cost (\$/yr)	Total NPC			Capacity Shortage	Diesel (L)	Gen (hrs)	
Generator 1	¶≉े⊠⊠	21	3 36	48	15	\$ 162,437	20,322	\$ 395,528	0.603	0.83	0.02	4,991	619	
esources Other	TAO DZ	30	3 36	48	15	\$ 178,187	19,401	\$ 400,711	0.598	0.90	0.00	3,351	428	
🧕 Solar resource 🛛 📅 Economics	7 本で回図 7本で回図	22 23	3 36 3 36	48 48	15 15	\$ 164,187 \$ 165,937	20,717 20,993	\$ 401,808 \$ 406,722	0.607 0.612	0.83 0.84	0.01 0.01	4,995 4,996	631 635	
😵 Wind resource 🛛 🧟 System control		40	3 36	48	15	\$ 195,687	18,421	\$ 406,974	0.608	0.95	0.00	1,817	236	
	▛ጱ፝۞፼፼	40	2 36	48	15	\$ 179,687	19,977	\$ 408,827	0.610	0.93	0.00	2,513	323	
Diesel Arid extension	┦Ѧѽ៙҄҄҄҄҄	24	3 36	48	15	\$ 167,687	21,258	\$ 411,514	0.616	0.84	0.00	4,992	636	
Emissions	┦Ѧѽฃ҄҄҄	25	3 36	48	15	\$ 169,437	21,174	\$ 412,296	0.616	0.85	0.00	4,830	616	
😥 Constraints		30 50	2 36	48	15	\$ 162,187	22,337	\$ 418,386	0.625	0.85	0.00	4,778	626	
ocument	7 本で回図 7本で回図	50 50	2 36 3 36	48 48	15 15	\$ 197,187 \$ 213,187	20,225 18,988	\$ 429,164 \$ 430,976	0.641 0.643	0.96 0.98	0.00 0.00	1,651 1,141	219 155	
Author Sneij i Vilar		50 40	3 36 1 36	40 48	15	\$ 213,187 \$ 163,687	23,484	\$ 430,976 \$ 433,044	0.643 0.646	0.98 0.88	0.00	4,155	155 546	
	₽ \$©®⊠	40 50	1 36	40	15	\$ 181,187	22,363	\$ 433,644 \$ 437,690		0.94	0.00	2,576	336	
Notes						¥ 101,101	22,000	•,	0.000	0.01	0.00	2,010		
66														
	1													



Evaluation of **each solution**: economics and technical performance




How does HOMER work ?

- HOMER simulates the operation of a system by making energy balance calculations for each of the 8,760 hours in a year.
- For each hour calculates the flows of energy to and from each component of the system.
- HOMER performs these energy balance calculations for each system configuration that you want to consider.
- It then determines whether a configuration is feasible, i.e., whether it can meet the electric demand under the conditions that you specify.
- It estimates the cost of installing and operating the system over the lifetime of the project.

Hourly energy balance calculations

III. PROS & CONS

Advantages and Disadvantages

HOMER

Among other aspects to debate, we may say that for this training HOMER has some advantages and disadvantages.

PROS	CONS
Simulates a list of real technologies, as a catalogue of available technologies and components.	Quality input data needed (sources).
Very detailed results for analysis and evaluation.	Detailed input data (and time) needed.
Determines the possible combinations of a list of different technologies and its size.	Experienced criteria is needed to converge to the good solutions.
It is fast to run many combinations.	If you miss key values or sizes, HOMER will not guess them!
You can learn from the results, and optimize.	You can loose yourself if you don't set the adequate questions.

IV. HOW CAN THIS SIMULATION TOOL BE USEFUL TO YOU?

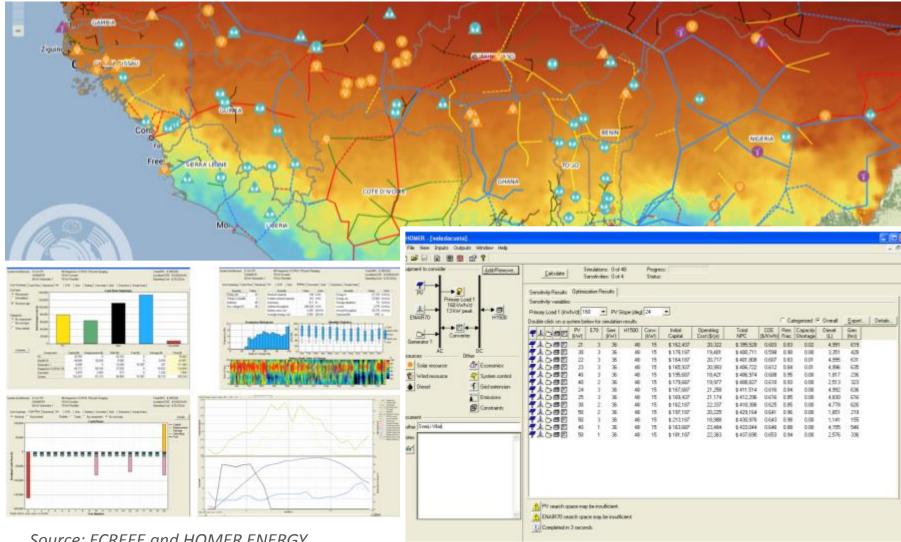
Examples, outputs, results and analysis

Two scenarios after this training

Audit of projects

 You will be able to create a HOMER file, input the data used in a project or in a proposal, and get a list of feasible solutions. You may use the results to establish a dialogue with the hybrid system designer, and require more answers or justifications.

• Site appraisal


 You will be able to create a HOMER file, input relevant data and get a list of feasible solutions. You may use the results to develop insight into your designs (or plans), exploring the implications, reasoning key aspects and establish recommendations.

Audit scenario

Source: SOTEC, SMA and TTA

Appraisal scenario

Source: ECREEE and HOMER ENERGY

References

- HOMER Energy (2011), Getting Started Guide for HOMER Legacy (Version 2.68), Homer Energy and National Renewable Energy Laboratory, Colorado. <u>http://www.ecowrex.org/document/getting-started-guide-homer-legacy-version-268</u>
- IEA, (2011), Report IEA-PVPS T11- 01:2011 World-wide overview of design and simulation tools for hybrid PV systems. <u>http://www.ecowrex.org/document/world-wide-overview-design-and-simulation-toolshybrid-pv-systems</u>

ECOWAS Regional Centre for Renewable Energy and Energy Efficiency

Centre Régional pour les Energies Renouvelables et l'Efficacité Energétique de la CEDEAO

Centro Regional para Energias Renováveis e Eficiência Energética da CEDEAO

Merci! Thank you! Muito obrigado!

Secretariat du CEREEC Achada Santo Antonio B.P. 288, Praia – Cap-Vert Tel: +2382624608 <u>http://www.ecreee.org</u> <u>info@ecreee.org</u>